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Abstract
The unitary irreducible representations of the covering group of the Poincaré
group P define the framework for much of particle physics on the physical
Minkowski space M = P/L, where L is the Lorentz group. While
extraordinarily successful, it does not provide a large enough group of
symmetries to encompass observed particles with a SU(3) classification. Born
proposed the reciprocity principle that states physics must be invariant under the
reciprocity transform that is heuristically {t, e, qi, pi} → {t, e, pi,−qi} where
{t, e, qi, pi} are the time, energy, position and momentum degrees of freedom.
This implies that there is reciprocally conjugate relativity principle such that
the rates of change of momentum must be bounded by b, where b is a universal
constant. The appropriate group of dynamical symmetries that embodies this is
the canonical group C(1, 3) = U(1, 3)⊗sH(1, 3) = SU(1, 3)⊗s OS(1, 3) and
in this theory the non-commuting space Q = C(1, 3)/SU(1, 3) is the physical
quantum space endowed with a metric that is the second Casimir invariant of the
canonical group, T 2 + E2

c2b2 − Q2

c2 − P 2

b2 + 2�I
bc

(
Y
bc

− 2
)

where {T ,E,Qi, Pi, I, Y }
are the generators of the algebra of OS(1, 3) = U(1)⊗s H(1, 3). The idea is
to study the representations of the canonical dynamical group using Mackey’s
theory to determine whether the representations can encompass the spectrum of
particle states. The unitary irreducible representations of the canonical group
contain a direct product term that is a representation of U(1, 3) that Kalman
has studied as a dynamical group for hadrons. The U(1, 3) representations
contain discrete series that may be decomposed into infinite ladders where the
rungs are representations of U(3) (finite dimensional) or C(2) (with degenerate
U(1)⊗ SU(2) finite-dimensional representations) corresponding to the rest or
null frames.
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1. Introduction

The unitary irreducible representations of the universal cover of the Poincaré group P provide
the basic framework for particle physics [1]. The Casimir invariants define the concept
of mass and spin and give rise to basic equations, including the Dirac, Klein–Gordon and
Maxwell equations. The quotient of P with the universal cover of the Lorentz group
L = SL(2,C) defines the Minkowski position–time space M = P/L that is regarded as
the underlying physical space of physics. This space has the invariant E2/c2 − P 2 where
{E,Pi}, i, j = 1, 2, 3, are the momentum–energy degrees of freedom that may be associated
with the generators of the algebra of the four-dimensional translation group T (4) that is a
normal subgroup of the Poincaré group.

Particle physics has proven to be much richer than can be encompassed by simply the
Poincaré group. For example, SU(3), which is known to play a fundamental role in hadron
physics, simply has no origin in the Poincaré symmetries. One of the approaches to resolve
this is to increase the dimensionality of the underlying position–time physical space in order
to give rise to groups large enough to encompass these symmetries. These dimensions are then
argued to be unobservable due to their compactification into very small dimensions. In this
paper, we argue that, rather than add additional position–time degrees of freedom, the physical
degrees of freedom of momentum and energy are already present and must be considered in
the quantum theory.

Dirac’s transformation theory of quantum mechanics [2] is formulated on the non-Abelian
position–momentum space of the Weyl–Heisenberg group and its associated algebra. In the
non-relativistic formulation of this theory, the position and momentum degrees of freedom
{Qi, Pi} appear to be equally fundamentally physical and satisfy the Heisenberg commutation
relations [Qi, Pi] = i�I . Likewise, for time and energy, [T ,E] = −i�I .

This led Born to conjecture the notion of reciprocity, that the laws of physics are invariant
under the reciprocal conjugation given by {t, e, qi, pi} → {t, e, pi,−qi} [3, 4]. Clearly the
Heisenberg commutation relations are invariant under this transform. This then led Born
to the conjecture that the basic underlying physical space is the eight-dimensional space
spanned by the degrees of freedom time–position–momentum–energy {T ,Qi, Pi , E} with an
invariant metric −T 2 + Q2/c2 + dmin

4

�2c2 (P
2 − E2/c2) where dmin is a minimum length scale

that Born conjectured existed. Cainiello interpreted Born’s idea to be that acceleration
is bounded and instead defined a maximal acceleration amax as the fundamental concept
[5].

The argument here is that Born’s reciprocity implies that there must be a reciprocally
conjugate relativity principle that leads to the rate of change of momentum (force) being
bounded by a universal constant b in a manner reciprocally conjugate to the usual relativity
principle that results in rates of change of position (velocity) being bounded by c for particle
states that have a rest frame [6, 7]. Born’s minimum length may be defined in terms of b as
dmin = √

�c/b where b has the dimensions of force.
The reciprocity conjecture may be given more precise mathematical meaning by noting

that the group of symmetries that leaves Born’s orthogonal metric invariant is O(2, 6). If we
also assume that the symplectic structure −E ∧ T + δijPi ∧ Qi continues to be preserved,
then the group is the non-compact unitary group U(1, 3) = O(2, 6)

⋂
SP(4). The natural

inhomogeneous group to consider is the canonical group, the semidirect product of the unitary
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group with the Weyl–Heisenberg group H(1, 3), C(1, 3) = U(1, 3)⊗sH(1, 3) or equivalently
C(1, 3) = SU(1, 3) ⊗s OS(1, 3) where OS(1, 3) is the oscillator group. This paper is
essentially an exposition of the representation theory and preliminary physical consequences
of this group and how it embodies Born’s reciprocity principle.

The generator I is in the centre of the Heisenberg algebra and is therefore a Casimir
invariant, c1(C(1, 3)) = I . The second-order invariant c2(C(1, 3)) = c2(OS(1, 3)) is

c2(C(1, 3)) = −1

2
λt

−2

(
T 2 +

E2

c2b2
− Q2

c2
− P 2

b2
+

2�I

bc

(
Y

bc
− 2

))

with λt = √
�/cb and where Y is the generator of the U(1) algebra appearing in OS(1, 3). This

is also an invariant of both the algebras of the oscillator group and the canonical group. Thus,
the strict line element that Born conjectured must be augmented with the 2�I

bc

(
Y
bc

− 2
)

term to
be an invariant of the canonical group. The appearance of this term is due to the non-Abelian
nature of the Weyl–Heisenberg normal subgroup.

Now, in this theory, the constant b has a role that is reciprocally conjugate in its role
to c and is taken to be fundamental rather than Born’s minimum length dmin or Cainiello’s
maximum acceleration amax. Note that as force and velocity do not commute, their respective
values relative to b and c cannot be simultaneously observed as a measurement will yield data
for one or the other depending on whether position or momentum is diagonalized. It is shown
in [6, 7] that the transformation laws, generated by the homogeneous group SU(1, 3), provide
precisely the properties introduced here.

Born’s conjecture of reciprocity directly leads to the canonical group and the corre-
sponding non-commuting quantum space Q = C(1, 3)/SU(1, 3) = SU(1, 3) ⊗s OS(1, 3)/
SU(1, 3) (or the corresponding covers Q = C(1, 3)/SU(1, 3)). (Note that if Q was defined as
C(1, 3)/U(1, 3), the only natural invariant on Q would have been the first Casimir invariant
I . A quadratic invariant that reduces to the usual position–time metric in the appropriate limit
does not then exist.)

The symmetric space Q is constructed from the canonical group dynamical symmetries in
a manner analogous to Minkowski space M being constructed from the Poincaré symmetries.
However, unlike M � R

4,Q is a noncommutative space in which the primitive points are
intrinsically quantum oscillations. In the standard theory, the Poincaré group P , from the
dynamical perspective, describes how a particle state on M (an irreducible representation of
P) is transformed as it is rotated, boosted to a uniform rate of change of position or translated.
This theory generalizes this to the dynamical canonical group describing how a particle state
on Q (an irreducible representation of C(1, 3)) is transformed as it is rotated or boosted to a
frame with an arbitrary rate of change of position and momentum, or translated on the non-
commuting space Q. As this intrinsically contains interacting particles (due to the non-zero
rates of change of momentum), one expects the dynamical symmetry to not only describe the
usual particle tuplets (in the ‘rest’ or ‘null’ frame) but also describe the transitions between
these states when viewed from the interacting frames. That is, one expects the dynamical
symmetries to be spectrum generating symmetries in the sense described by Bohm [8].
However, note that in this case, the dynamical group acts on the space Q itself and constructs
the particles, and their associated dynamical symmetries, through the representations of
this action.

The essence of the Born conjecture is that this spaceQ (and the associated canonical group
particle states) is as physical as the Minkowski space M (and its associated Poincaré group
particle states). The transformations that mix the time–position degrees of freedom with the
momentum–energy occur only at scales defined by b which may be very large. For example,
in the early universe where these scales were probably realized, we would have the notion
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of the position–time degrees of freedom condensing out of contracting momentum–energy
degrees of freedom through these generalized U(1, 3) transformations.

The unitary irreducible representations of the canonical group (or its cover) should
provide a framework for particle physics that encompasses the results of the representations
of the Poincaré group but are large enough to encompass symmetries known to exist but not
encompassed by the Poincaré group representations. As we shall see, working out the full
consequences of the reciprocity as embodied in the unitary representations of the canonical
group is a well-defined, but nevertheless, formidable task. This paper outlines the required
group theory and provides the general framework. A subsequent paper will examine the
detailed results and the correlation with physical phenomenology.

A general method for computing semidirect products of sufficiently well-behaved Lie
groups has been determined by Mackey. This theory has been used to determine the general
n, m dimensional canonical group unitary irreducible representations [9–11].

These representations are most naturally computed on the Bargmann Hilbert space of
analytic functions. The representations may be transformed to representations in which one
of the subsets {T ,Qi}, {E,Pi}, {T , Pi}, {E,Qi} of the generators of the Heisenberg algebra
is diagonal through the Segal–Bargmann transform.

2. Unitary irreducible representations of the canonical group

This section reviews the required group representation theory. We start with basic properties
of the canonical group and algebra and then review the Bargmann Hilbert space of analytic
functions on which the groups are represented. The Mackey representation theorems that
enable the unitary dual (i.e. complete set of equivalence classes of irreducible unitary
representations) for semidirect product groups satisfying certain properties are summarized.
The application to the Poincaré, Weyl–Heisenberg, oscillator and canonical groups is then
summarized. The Poincaré group is very well known, but it is presented to provide a familiar
departure point for readers not familiar with the Mackey theory. Computations that appear in
this case also appear in the canonical group to which we are then able to simply refer. Finally,
properties of certain representations of U(1, 3) that appear in the canonical group calculation
are summarized.

2.1. Basic properties of the group and algebra

For the partitioning C(1, 3) = SU(1, 3) ⊗s OS(1, 3), the group may be parametrized as
g(U, ϑ, ω, ι) where U ∈ SU(1, 3) has 15 parameters, θ, ι ∈ R and ω ∈ C

4. The oscillator
subgroup OS(1, 3) has elements g(I, ϑ, ω, ι) and the Weyl–Heisenberg group is g(I, 0, ω, ι).
The group multiplication law is given by

g(U ′, ϑ ′, ω′, ι′)g(U, ϑ, ω, ι) = g(U ′U,ϑ ′ + ϑ,ω′ + eiϑ ′
U ′ω,

ι′ + ι− i

2
((ω′, U ′ω) eiϑ − (ω′, U ′ω) e−iϑ))

(1)

where (ω, z) = ηa,bω
azb, (U ′U)ab = U ′a

cU
c
b and (Uω)a = Ua

b ω
b. Except where otherwise

noted, a, b = 0, 1, 2, 3, i, j = 1, 2, 3 and diag(ηa,b) = {−1, 1, 1, 1}.
The inverse group element is

g(U, ϑ, ω, ι)−1 = g(U−1,−ϑ,−U−1 e−iϑω,−ι). (2)

For the partitioning C(1, 3) = U(1, 3) ⊗s H(1, 3), ϑ becomes the 16th parameter of
U ∈ U(1, 3) and the group composition law may be written as

g(U ′, ω′, ι′)g(U,ω, ι) = g
(
U ′U,ω′ + U ′ω, ι′ + ι− i

2
((ω′, U ′ω)− (ω′, U ′ω))

)
. (3)
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The algebra of this group is

[Za,b, Zc,d ] = ηb,cZa,d − ηa,dZc,b [A+
a, A

−
b ] = ηa,bI [Za,b, A±

c ] = ∓ηa,cA±
b . (4)

Note that A+
b = A−

b . The algebra of U(1, 3) factors into the direct sum of the algebra of U(1)
and the algebra of SU(1, 3). The generator of the U(1)may be defined as Y = ηabZab and the
generators of the algebra of SU(1, 3) are then defined as Ẑab = Zab−ηabY/4. The generators
Ẑab satisfy the same commutation relations as given in equation (4).

The Casimir invariants of the algebra are given by [12]

c1(C(1, 3)) = I

c2(C(1, 3)) = ηa,bWa,b

c4(C(1, 3)) = ηa,dηb,cWa,bWc,d

c6(C(1, 3)) = ηa,f ηb,cηd,eWa,bWc,dWe,f

c8(C(1, 3)) = ηa,hηb,cηd,eηf,gWa,bWc,dWe,fWg,h

(5)

whereWa,b = A+
aA

−
b − IZa,b.

Note that the first Casimir invariant is simply the Casimir invariant of the Weyl–
Heisenberg group and one of the two Casimir invariants of the oscillator group, c1(C(1, 3)) =
c1(H(1, 3)) = c1(OS(1, 3)), and the second Casimir invariant is the second Casimir invariant
of the oscillator group, c2(C(1, 3)) = c2(OS(1, 3)).

2.2. The Bargmann Hilbert space

The group C(1, 3) may be represented on a four-dimensional Bargmann space B4 [14] that is
the Hilbert space of entire analytic functions on C

4 with finite inner product defined by

〈f, h〉 =
∫
f (z)h(z) dµ(z) (6)

with z ∈ C
4 and dµ(z) = π−4 e−(z,z) dx0 . . . dx3 dy0 . . . dy3 with za = xa + iya.

An orthonormal basis of this space is given by ξm(z) = (z0)m0√
m0!

· · · (z3)m3√
m3!
,ma = 0, 1, 2, . . . ,

and it follows that 〈ξm, ξn〉 = δm,n where δm,n = δm0,n0 . . . δm3,n3 .
The Bargmann space is related to the usual Hilbert spaceH4 = L2(R4) of square integrable

functions with inner product

〈ϕ,ψ〉 =
∫
ϕ(x)ψ(x) d4x (7)

where x ∈ R
4 through the Bargmann transform

f (z) = (Bψ)(z) =
∫
B(z, x)ψ(x) d4x

ψ(x) = (Bf )(x) =
∫
B(z, x)f (x) dµ(z).

(8)

The kernel of the integral transform is given by

B(z, x) = π−1 e− 1
2 ((z,z)+x·x)+

√
2z·x (9)

where (z, z) = ηa,bz
azb, z ∈ C

4 is the Hermitian inner product and x · x = ηa,b x
axb, x ∈ R

is the Lorentz inner product. In particular, the orthonormal basis ηm(x) of H4 obtained by
transforming the orthonormal basis vectors ξm(z) of B4, ηm(x) = (Bξm)(x), is given in terms
of Hermite polynomials

ηm(x) = ηm0(x) . . . ηm3(x)

ηma (x) = (
2mama!

√
ma

)−1/2
e−x·x/2Hma(x).

(10)
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2.3. Mackey representation theory

The problem of determining the complete set of equivalence classes of unitary irreducible
representations of a general class of semidirect product groups has been solved by Mackey.
The canonical group is a special case of the n,m dimensional canonical group C(n,m) for
which the Mackey theory has been applied by Wolf to obtain the full unitary dual [9].

These results are summarized in this section with explicit application of the Mackey theory
to the Weyl–Heisenberg, oscillator and canonical groups to facilitate the physical discussion
that follows.

There are two essential concepts used by Mackey to determine the unitary irreducible
representations of a semidirect product. The first is the general notion of inducing a
unitary representation of a group G from a unitary representation of a subgroup G◦. This
does not require G to have a semidirect product structure nor does it place any specific
requirements, other than certain technical conditions, that all the cases in question satisfy, on
G◦ to induce representations. However, there is no guarantee that the resulting representations
are irreducible or a complete set. The second of the Mackey theorems gives the construction
of the specific set of subgroups G◦, and the corresponding representations, in the semidirect
product case, that induce the unitary dual Ĝ of G. The unitary dual is the complete set of
equivalence classes of irreducible unitary representations on G with an appropriate Borel
topology.

2.3.1. Mackey-induced representation theorem. Let G be a separable locally compact group
with a closed subgroup G◦. Let ρ◦ be unitary representations of G◦ on a separable Hilbert
space B, ρ◦ : G → B. Let  be the section  : G/G◦ → G. The representation ρ◦ on G◦

induces the representation ρ on G as

(ρ(g)f )(γ ) = ρ◦((γ )−1g(g−1γ ))f (g−1γ ) (11)

where g ∈ G, γ ∈ G/G◦ and f ∈ L2(G/G◦,B, µ) and µ is an invariant measure on G/G◦.
For the cases of interest to us, the groups are very well behaved and satisfy the requisite

properties and the Hilbert space is a Bargmann space of analytic functions.

2.3.2. Semidirect group stabilizer and extensions-induced unitary dual theorem. Now,
consider the case where G = U ⊗s N is the semidirect product of separable locally compact
groups where N is the normal subgroup and U is the homogeneous group. To emphasize this
semidirect product structure, we write an element g of G as g(U, n)where g(U, n)|N = n ∈ N
and g(U, n)|U = U ∈ U . We wish to find the groupsG◦ and the corresponding representations
ρ◦ that induce through equation (11) the full unitary dual Ĝ. First, elements of the unitary
dual N̂ of N are the equivalence classes of representations [η]. The action g ∈ G on a
representation η of N is defined by

(gη)(n) = η(g−1ng). (12)

The stabilizer Gη is the subgroup of G that maps η into another element of the same
equivalence class, [gη] = [η]. In the case of the Abelian normal subgroup N , equivalence
is simply equality, gη = η. The stabilizer intersecting the homogeneous group is the Little
group Uη = Gη ∩ U .

The subgroup Gη has a unitary dual Ĝη consisting of equivalence classes of unitary
irreducible representations [ρη]. The extension of η is the equivalence class [ρη] that, when
restricted to N , ρη is a multiple of η:

E(η) = {[ρη]|ρη|N = cη} where c ∈ C\{0}. (13)
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Also, the irreducible representations σ of the Little group Uη may be regarded as a
representation of Gη in which N acts trivially. The groups in question must satisfy certain
topological conditions, for which sufficient conditions are that the group, normal subgroup
and stabilizer group are algebraic and that G is analytic on N̂ . The set of representations
induced using the induced representation theorem by the representations ρ◦ = σ ⊗ ρη with
G◦ = Gη for all η ∈ N̂ defines the complete set of irreducible representations on G; that is the
unitary dual Ĝ.

An important corollary of Mackey’s theory is that if N is an Abelian group, then all
the equivalence classes that are elements of the dual simply have one element, one of the
characters of the group. In this case, ρη(g(U, n)) = σ(U)⊗s η(n) where σ is an irreducible
representation of U . In general, for a non-Abelian normal group N , the expression [gη] = [η]
becomes explicitly

(gη)(n) = η(g−1ng) = χ(g)−1η(n)χ(g). (14)

In this case, ρη(g(U, n)) = σ(U)⊗s χ(g(U, n)) and χ(g(U, n)) = η(n)χ(U) with χ(U) =
χ(g(U, n))|U a projective representation.

2.4. Unitary irreducible representations of the Poincaré group P

The Poincaré group is the semidirect product P = SO(1, 3) ⊗s T (4) with T (4) � R
4.

(We consider here the Poincaré group itself and not its universal cover P but a similar
analysis applies.) The group composition law is g(L′, x ′)g(L, x) = g(L′L, x ′ + L′x) where
L ∈ K = SO(1, 3) and x ∈ N = T (4). The unitary irreducible representations of R

4

are simply the characters ρk(g(0, x)) = eik·x , k ∈ R
4, and the unitary dual T̂ is naturally

isomorphic to the vector space dual of R
4. The action of elements L on the dual T̂ of T (4) is

g(L, 0)ρk = ρL−1k. Thus, while each of the ka ∈ R is an invariant of the normal groupN , they
are not invariants of the full Poincaré group. However, the Minkowski inner product k ·k = µ2

is invariant as it is a Casimir invariant of the full group. Therefore, the representation theory
divides into the classes of orbits based on the condition Lk = k,

O+ = {
ρk|k · k = −µ2

+

}
with µ2

+ ∈ R > 0
O− = {

ρk|k · k = µ2
−
}

with µ2
− ∈ R > 0

O0 = {ρk|k · k = 0}
O0 = {ρ0|k = 0}.

(15)

For O+, the stabilizer is Gρ = SO(3) ⊗s T (4). The cosets γQ ∈ G/Gρ are labelled by the
elementsQ ∈ SO(1, 3)\SO(3), that is the pure Lorentz transformations. The representations
of SO(3) are σs(R), where R ∈ SO(3) and s ∈ N (s is the half-integral for the cover
SU(2) = SO(3)). The action of the group on the cosets is g(L, x)γQ′ = γQQ′ and the section
is (γQ) = g(Q, 0). Therefore,

(γQ′)−1g(L, x)(γQ−1Q′) = g(Q′−1, 0)g(L, x)g(Q−1Q′, 0)

= g(Q′−1LQ−1Q′,Q′−1x)

= g(R◦,Q′−1x) (16)

where the fact that every Lorentz transformation may be written as a pure Lorentz
transformation and a rotation, L = QR, has been used to write R◦ = (Q−1Q′)−1RQ−1Q′.
Substituting into the induced representation theorem (11) yields

(�µ,s(g(L, x))f )(γQ′) = σs(R
◦)ρk(Q′−1x)f (γQ−1Q′) = σs(R

◦) eiQ′k·xf (γQ−1Q′). (17)
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There is a one-to-one bijection between pure Lorentz transformations and points k with
k · k > 0. That is, for every k, k′ there is a unique Qk

′ such that k′ = Qk
′k. Then, there is a

one-to-one bijection between γQ′ and k′ giving the result

(�µ,s(g(L, x))f )(k
′) = σs(R

◦) eik′ ·xf (Q−1k′). (18)

Similar results hold for O− where the stabilizer is Gρ = SO(1, 2) ⊗s T (4), with Q ∈
SO(1, 3)\SO(1, 2) where the representations of SO(1, 3) are infinite dimensional (except
the trivial) and are not considered physically. The null case O0 where the stabilizer is Gρ =
E(2) ⊗s T (4) (with E(2) the Euclidean group in two dimensions) and Q ∈ SO(1, 3)\E(2).
Note that all the representations of E(2) are infinite dimensional except the trivial and the
degenerate representations of the SO(2) subgroup. These finite-dimensional representations
are used in the physical interpretation. Finally, the degenerate case O0 is the representations
of SO(1, 3) which are infinite dimensional and not considered physically.

2.5. Unitary irreducible representations of H(1, 3)

The Weyl–Heisenberg subgroup is obtained by restricting the canonical group law (1) to the
case U = I, ϑ = 0:

g(ω′, ι′)g(ω, ι) = g
(
ω′ + ω, ι′ + ι− i

2
((ω′, ω)− (ω′, ω))

)
. (19)

Defining ω = α + iβ with α, β ∈ R
4, this becomes

g(α′, β ′, ι′)g(α, β, ι) = g(α′ + α, β ′ + β, ι′ + ι + (α′, β)− (β ′, α)). (20)

The group is, therefore, isomorphic to the semidirect product H(1, 3) � K ⊗s N with
α ∈ K = R

4 and {β, ι} ∈ N = R
5. The Abelian case of the Mackey representation

theory may apply [10]. The unitary irreducible representations of R
5 are the characters

ρυ,v(g(0, β, ι)) = ei(υ·β+v·ι) where υ ∈ R
4, v ∈ R. The action of the homogeneous group K

on the dual N̂ follows from equation (12), g(α, 0, 0)ρυ,v = ρυ+αv,v . Thus the orbits in N̂ are

Oκ0 = {
ρυ,κ0 |υ ∈ R

4} with κ0 ∈ R\{0}
Ou = {ρu,0} with u ∈ R

4.
(21)

Consider first Oκ0 . Choosing ρ0,κ0 as the representative point in the orbit, only the identity in
K leaves invariant ρ0,κ0 and therefore the stabilizer is Gρ = I ⊗s N � N and the extensions
are simply the representations ρυ,κ0 . The Mackey induction theorem may be applied using
G/Gρ = K ⊗s N/I ⊗s N � K. That is, the cosets γα ∈ G/Gρ are labelled by the elements α
of K. Then g(α, β, ι)γα′ = γα′+α and the section is (γα) = g(α, 0, 0). Substituting into the
induced representation theorem (11) yields

(ηκ0(g(α, β, ι))f )(γα′) = ρ0,κ0((γα′)−1g(α, β, ι)(γα′−α))f (γα′−α)
= ρ0,κ0(g(−α′, 0, 0)g(α, β, ι)g(α′ − α, 0, 0))f (γα′−α)
= ρ0,κ0(g(0, β, ι− α′ · β))f (γα′−α). (22)

And therefore the unitary irreducible representations of the Weyl–Heisenberg group are

(ηκ0(g(α, β, ι))f )(x) = eiκ0(ι−x·β)f (x − α) (23)

where the identification G/Gρ � K = R
4 is used. The unitary dual that is defined by these

representations is denoted by Ĥ∞.
Using the Segal–Bargmann transform (8), this takes the form acting on the Bargmann

space

(ηk0(g(ω, ι))f )(z) = eκ0(iι−(ω,z−ω/2))f (z − ω) (24)

where z ∈ C
4 and f (z) ∈ B is analytic.
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The case Ou is more straightforward. The entire group K leaves ρu,0 invariant and
therefore the stabilizer is the full group Gρ = G. The extensions are simply the direct product
of the representations of K = R

4 with the representations ρu = ρu,0 of R
4. Induction is trivial

and so the representations are

ηu,v(g(α, β, ι)) = ei(u·β+v·α) u, v ∈ R
4 (25)

or defining ω = α + iβ ∈ C and w = v − iu ∈ C, ηw(g(ω, ι)) = ei(w·ω +w·ω)/2.
The unitary dual containing these representations is denoted by Ĥ1 and the full unitary

dual of H(1, 3) is the disjoint union Ĥ = Ĥ∞ ∪ Ĥ1.

2.6. Unitary irreducible representations of OS(1, 3)

The oscillator group has the semidirect product structure G = OS(1, 3) = U(1)⊗s H(1, 3)
[13]. In this case, the normal subgroup N = H(1, 3) is non-Abelian for representations in
Ĥ∞ and the homogeneous group is K = U(1) with elements g(ϑ, 0, 0) = eiϑ . The action
on the dual N̂ leaves κ0 invariant as it is an eigenvalue of I that generates elements in the
centre of the oscillator group as well as the Weyl–Heisenberg group and so the stabilizer group
Gη = OS(1, 3). The action is

g(ϑ, 0, 0)ηκ0(g(0, ω, ι)) = ηκ0(g(0, eiϑω, ι))

= χ−1(eiϑ)ηκ0(g(0, ω, ι))χ(e
iϑ )

(26)

which is true for all ϑ ∈ U(1). Therefore, the action element of U(1) on the dual Ĥ∞ is
g(ϑ, 0, 0)ηκ0 = χ−1(eiϑ)ηκ0χ(e

iϑ) where (χ(eiϑ)f )(z) = f (e−iϑz). The representations of
U(1) are σκ1 = eiκ1ϑ with κ1 ∈ Z. The induction is trivial and therefore �κ0,κ1 = σκ1 ⊗ ηκ0χ :

(�κ0,κ1(g(ϑ, ω, ι))f )(z) = eκ0(iι−(ω,z−ω/2))−iκ1ϑf (e−iϑ(z − ω)). (27)

For representations of N in Ĥ1, the Abelian case applies. The action of elements of
K on Ĥ1 is g(ϑ, ω, ι)ηw = η e−iϑw. The Little group is therefore the identity and the
stabilizer is Gη = I ⊗s H(1, 3). The Mackey induction theorem may be applied using
G/Gη = U(1) ⊗s H(1, 3)/I ⊗s H(1, 3) � U(1). In this case the cosets γϑ ∈ G/Gη
are labelled by the elements ϑ of U(1). Then g(ϑ, α, β, ι)γϑ ′ = γϑ ′+ϑ and the section is
(γϑ) = g(ϑ, 0, 0). Substituting into the induced representation theorem (11) yields

(�w(g(ϑ, ω, ι))f )(γϑ ′) = ηw((γϑ ′)−1g(ϑ, α, β, ι)(γϑ ′−ϑ))f (γϑ ′−ϑ)
= ηw(g(−ϑ ′, 0, 0)g(ϑ, ω, ι)g(ϑ ′ − ϑ, 0, 0))f (γϑ ′−ϑ)
= ηw(g(e−iϑ ′

ω, ι))f (γϑ ′−ϑ) (28)

2.7. Unitary irreducible representations of C(1, 3)

The form C(1, 3) = U(1, 3) ⊗s H(1, 3) of the canonical group is convenient to determine
the representations [9]. The homogeneous group is K = U(1, 3) and the normal group is
N = H(1, 3).

As in the case of the oscillator group, equation (5) shows that κ0 is an invariant of the full
canonical group C(1, 3). Therefore, the action of elements of U(1, 3) on the dual Ĥ∞ is

g(U, 0, 0)ηκ0 = χ−1(U)ηκ0χ(U) (29)
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where U ∈ U(1, 3) and

(χ(U)f )(z) = f (U−1z). (30)

The stabilizer group is therefore the entire group, Gη = G = C(1, 3), and induction to the full
group is trivial. The representations are therefore

�κ0,κ1,κ2,κ3,κ4(g(U,ω, ι)) = σκ1,κ2,κ3,κ4(U)⊗ ηκ0(g(ω, ι))χ(U) (31)

where σκ1,κ2,κ3,κ4 ∈ Û where Û is the unitary dual of U(1, 3). As will be discussed in the
following section, these representations are labelled by four constants corresponding to the
four Casimir invariants of U(1, 3).

Note that if we had chosen to use the decomposition C(1, 3) = SU(1, 3)⊗s OS(1, 3), the
same would have applied. In this case, from equation (5), both κ0 and κ1 are invariants and
the action of elements of SU(1, 3) on the dual ÔS∞ is given by

g(U, 0, 0, 0)�κ0,κ1 = χ−1(U)�κ0,κ1χ(U) (32)

where now U ∈ SU(1, 3). Again, induction is trivial and the representations are

�κ0,κ1,κ2,κ3,κ4(g(U, ϑ, ω, ι)) = σκ2,κ3,κ4(U)⊗ �κ0,κ1(g(ϑ, ω, ι))χ(U). (33)

It is straightforward to show that these are equivalent to the representations in equation (31).
For the case where the representations are elements of Ĥ1, the representation theory

uses the Abelian case of the Mackey theory as N = C
4 and it is very similar to the

Poincaré representation theory. The action of elements of U(1, 3) on the dual Ĥ1 is
g(U, 0, 0)ηw = ηU−1w . The orbits are

O+ = {
ηw|(w,w) = −µ2

+

}
with µ2

+ ∈ R > 0

O− = {
ηw|(w,w) = µ2

−
}

with µ2
− ∈ R > 0

O0 = {ηw|(w,w) = 0}
O0 = {η0|w = 0}.

(34)

The stabilizer group for O+ is Gη = U(3)⊗s C
4, for O− it is Gη = U(1, 2)⊗s C

4, for O0 it
is Gη = C(2)⊗s C

4 and for O0,Gη = U(1, 3). The application of the induced representation
then follows the Poincaré case.

For example, consider O+. The cosets γQ ∈ G/Gρ are labelled by pure boosts
Q ∈ U(1, 3)\U(3). (The explicit forms of the boosts are given in equation (52).) The
action of the group on the cosets is g(U,ω, ι)γQ′ = γQQ′ where we use the fact that every
element U ∈ U(1, 3) may be written as U = QR with R ∈ U(3) and Q a unique pure boost.
The section is (γQ) = g(Q, 0, 0). Then noting that

(γQ′)−1g(U,ω, ι)(γQ−1Q′) = g(Q′−1
, 0)g(U,ω, ι)g(Q−1Q′, 0)

= g(Q′−1
QRQ−1Q′,Q′−1

ω, ι) = g(R◦,Q′−1
ω, ι) (35)

where R◦ = (Q−1Q′)−1
RQ−1Q′. Substituting into the induced representation theorem (11)

yields

(�µ,S1,S2,S3(g(U,ω, ι))f )(γQ′) = σS1,S2,S3(R
◦)ρk(Q′−1x)f (γQ−1Q′). (36)

σs1,s2,s3 are the representations of U(3) labelled by three Casimir invariants. There is a one-to-
one bijection between pure boost transformations and points z ∈ C

4 with (z, z) > 0. That is,
for every z, z′ there is a uniqueQz

′ such that z′ = Qz
′z. Then, there is a one-to-one bijection
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between γQ′ and z′ giving the result

(�µ,S1,S2,S3(g(U,ω, ι))f )(z
′) = σS1,S2,S3(R

◦)ρk′(ω, l)f (Q−1z′). (37)

2.8. Unitary irreducible representations of U(1, 3)

The unitary irreducible representations of U(n, 1) have been completely characterized [16, 17]
using methods that are a direct generalization of the methods used to characterize the
irreducible representations ofU(n) [18]. This method is based on the chain of group inclusions
U(1, n) ⊃ U(n) ⊃ U(n − 1) · · · ⊃ U(1). For the case in question n = 3 and the chain is
U(1, 3) ⊃ U(3) ⊃ U(2) ⊃ U(1). The representations of U(j) in the Gelfand basis are labelled
by the j integers {m1,j , m2,j , . . . ,mj,j } with mk,j ∈ N satisfying the property

mk,j � mk,j−1 � mk+1,j . (38)

States within the representation are given by the corresponding labels of the inclusion chain,
{{m1,j }, {m1,j , m2,j }, . . . , {m1,j−1,m2,j−1, . . . ,mj−1,j−1}}.

In particular, the representations of U(3) have the invariants {m1,3,m2,3,m3,3} and the
states within the representations are given by {{m1,1}, {m1,2,m2,2}}. These Casimir invariants
may be defined in terms of these states. The general invariants have been calculated in [19] as

cn(U(n)) =
n∑

i,j=1

(mi,n + n− i)ηi,j + θi,j (39)

where θi,j = 1 for i < j and 0 otherwise. In particular

c2(U(3)) = m1,3(2 +m1,3) +m2
2,3 +m2,3(−2 +m2,3). (40)

This may be put in a form more familiar in the physics literature (corresponding to the Cartan
basis) by defining

n = m1,3 +m2,3 +m3,3 a = m1,3 −m2,3 b = m1,3 −m3,3 (41)

and then the Casimir invariant takes the familiar form with a, b the invariants of SU(3) and n
the invariant of U(1),

c2(U(3)) = n2

3
+

2

3
(a2 + b2 − b(a − 3)). (42)

The representations of U(4), may be labelled by {κ1, κ2, κ3, κ4} = {m1,4,m2,4,m2,4,m3,4} and
the states by {{m1,1}, {m1,2,m2,2}, {m1,3,m2,3,m2,3}}. Again, the Casimir invariants may be
expressed in the theorem of the κi and in particular,

c2(U(1, 3)) = κ1(3 + κ1) + κ2(1 + κ2) + κ3(−1 + κ3) + κ4(−3 + κ4). (43)

This is also true forU(1, 3) except that now the invariants κ1, κ4 are no longer necessary integers
and may be complex. Also the inequalities given by (38) do not hold without modification
and are generally unbounded and therefore infinite-dimensional. The full representation
theory shows that the constraints imposed by the group multiplication law (or locally, by
the commutation relations) give rise to seven series of representations, each with particular
constraints on the {κ1, κ2, κ3, κ4} and with appropriate inequality chains imposing conditions
on the mi,j and κi . One series is the principal series and three are the complementary series
that parallel the Lorentz representation theory. There are, however, also three series of discrete
representations, that do not exist in the Lorentz case, that we wish to examine more closely
here.

The reason for our choosing to look only at the discrete representation is that we know that
in nature particle states generally appear to be in finite-dimensional representations. Clearly
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all the representations of this non-compact group are infinite dimensional. The discrete series,
however, contain ladders of finite-dimensional representations where the rungs are finite-
dimensional representations of U(3) that have no counterpart in the Lorentz representation
theory [20]. This is very intriguing as it would give a picture of particles occupying an infinite
ladder of finite-dimensional representations. In fact, as will be shown in a section that follows,
in the generalized rest frame, there are no transitions between the representations on different
rungs and hence the representation appears to be a set of independent finite-dimensional
representations.

For this reason, we will review here in more detail only the discrete series Dp
±, and Dp

0 ,
wheremi,j ∈ Z, κi, p ∈ N, and for Dp

±; κ1 � 1, κ4 � 4.
The discrete representation cases for U(1, 4) are [17]

D1
+ : m1,3 > κ1 > κ4 − 4 > κ2 � m2,3 � κ3 � m3,3

D2
+ : m1,3 � κ2 � m2,3 > κ1 + 1 > κ4 − 3 > κ3 � m3,3

D1
− : m1,3 � κ2 > κ1 > κ4 − 4 > m2,3 � κ3 � m3,3

D2
− : m1,3 � κ2 � m2,3 � κ3 > κ1 + 1 > κ4 − 3 > m3,3

D3
0 : m1,3 � 1 + κ1 � m2,3 � 1 + κ2 � m3,3 � 1 + κ3

D2
0 : m1,3 � 1 + κ1 � m2,3 � 1 + κ2 κ4 − 1 � m3,3

D1
0 : m1,3 � 1 + κ1 κ3 − 1 � m2,3 � κ4 − 1 � m3,3

D0
0 : κ2 − 1 � m1,3 � κ3 − 1 � m2,3 � κ4 − 1 � m3,3.

(44)

The representations D3
0 are a positive ladder of finite-dimensional representations σn,a,b of

U(1)⊗ SU(3) where n, a, b are defined in (41). The representation ηκ1,κ2,κ3,κ4 of U(1, 3)may
be written as an infinite direct sum over n of σn,a,b. For example,

η0,0,0,0 = ⊕∞
i=0σi+3,i,i η1,0,0,0 = ⊕∞

i=0(σi+4,i+1,i+1 ⊕ σi+5,i,i+1)

η1,1,0,0 = ⊕∞
i=0(σi+6,i,i ⊕ σi+5,i,i+1) η1,1,1,0 = ⊕∞

i=0σi+6,i,i (45)

η2,0,0,0 = ⊕∞
i=0(σi+5,i+2,i+2 ⊕ σi+6,i+1,i+2 ⊕ σi+7,i,i+2).

3. Physical implications

3.1. Physical interpretation of the canonical group

The three physical constants c, b and � define natural scales of time, energy, position and
momentum

λt =
√

�/bc λq =
√

�c/b λp =
√

�b/c λe =
√

�bc. (46)

The other basic constants are dimensionless multiples of these scales, for example, G =
αGc

4/b. If an experiment was to determine thatαG = 1, then these scales would be numerically
equal to the usual Planck scales. Regardless, these scales play the role of the Planck scales in
this theory.

The properties of the canonical group may be investigated locally through the algebra.
Dimensioned generators {T ,E,Qi, Pi} may be defined as [7]

A±
0 = 1√

2
(T /λt ± iE/λe) A±

i = 1√
2
(Qi/λq ± iPi/λp) (47)

and the corresponding dimensional forms of the generators of the algebra of U(1, 3) are

Zi,0 = Ni/b − iKi/c Zi,j = Mi,j /bc− iεki,j Jk ηa,bZa,b = Y/bc. (48)
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An element of the unitary groupU(1, 3)may be represented as g(U(β, γ, α, θ, ϑ), 0, 0) = eZ

and an element of the Heisenberg group as g(0, ω(q, p, e, t)ι) = eA where

Z = βi

c
Ki +

γ i

b
Ni + αiJi +

θ i,j

bc
Mi,j +

ϑ

bc
Y

(49)

A = 1

λt

(
tT +

e

cb
E +

qi

c
Qi +

pi

b
Pi +

ι�

bc
I

)
.

The expanded form of the commutation relations may be straightforwardly calculated by
substituting (47) and (48) into (4) [7]. Note that {Ji,Ki} defines the usual algebra of the
Lorentz subgroup of velocity boosts and that {Ji,Ni} defines the algebra of the reciprocally
conjugate Lorentz subgroup of force boosts. There are four Poincaré subgroups whose
algebras are generated by the sets of generators {Ki, Ji, Pi, E}, {Ki, Ji,Qi, T },
{Ni, Ji,Qi,E}, {Ni, Ji, Pi, T }.

In terms of the algebra, the action of U(1, 3) on H(1, 3) that is defined by

g(0, ω′, ι′) = g(U, 0, 0)−1g(0, ω, ι)g(U, 0, 0) (50)

is simply the commutator A′ = A + [Z,A]. This yields the transformation equations

T ′ = T + βiQi

/
c2 + γ iPi

/
b2 + ϑE/c2b2

E′ = E − γ iQi + βiPi − ϑT
(51)

Qi
′ = Qi + εki,j α

jQk + βiT − γ iE/b2 − θ i,jPj
/
b2

Pi
′ = Pi + εki,j α

jPk + βiE/c2 − γ iT + θ i,jQj

/
c2.

The exponential expansion of (44) may be used to compute the group action. We compute
here only the pure boost transformationsU(β, γ, 0, 0, 0):

T ′ = cosh ζT +
sinh ζ

ζ

(
βiQi

/
c2 + γ iPi

/
b2

)

E′ = cosh ζE +
sinh ζ

ζ

( −γ iQi + βiPi
)

(52)

Qi
′ = Qi +

(
cosh ζ − 1

ζ 2

)
(βiβj/c2 + γ iγ j/b2)Qj +

sinh ζ

ζ
(βiT − γ iE/b2)

Pi
′ = Pi +

(
cosh ζ − 1

ζ 2

)
(βiβj /c2 + γ iγ j/b2)Pj +

sinh ζ

ζ
(βiE/c2 + γ iT )

where ζ =
√
βiβi/c2 + γ iγ i/b2. It is clear that in the limit c, b → ∞, these reduce to the

usual Newtonian relations

T ′ = T

E′ = E − γ iQi + βiPi
(53)

Qi
′ = Qi + βiT

Pi
′ = Pi + γ iT .

It is clear that the rate of change of momentum (force) parameter γ i , bounded by b, plays
a role reciprocally conjugate to the usual rate of change of position (velocity) parameter βi ,
bounded by c.

In this more explicit notation, substituting (47) and (48) into (5) gives the explicit
form of the second Casimir invariant that was mentioned in the introduction, c2(C(1, 3)) =
c2(OS(1, 3)),

c2(OS(1, 3)) = −1

2
λ−2
t

(
T 2 +

E2

c2b2
− Q2

c2
− P 2

b2
+

2�I

bc

(
Y

bc
− 2

))
. (54)
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3.2. Physical interpretation of the representations of the canonical group

In the Poincaré theory, the particle states correspond to finite-dimensional representations of
the time-like and null Little groups SO(3) and SO(2) depending on whether the Lorentz
metric is non-zero or zero as described in equation (15) (or in the covering case, SU(2) and
U(1)). Poincaré transformations leave tuplets with a given Casimir invariant into themselves
and in particular, there are no Poincaré transformations that take time-like states into null
states.

One could think of the time-like states as rungs of a ladder, labelled by the Casimir
invariants in representation space, and that the Poincaré transformations transform these rungs
into themselves with no mixing of states that are on different rungs. Likewise the null states
form null rungs that also do not mix under the transformations.

The representations of the canonical group have two primary cases depending on whether
� = 0 or non-zero corresponding to the classical limit and the general quantum case,
respectively.

In the � = 0 case, the group reduces to U(1, 3) ⊗s C
4. This case leaves the

Hermitian metric invariant and has potentially physically interesting generalized time-like
and null cases depending on whether the Hermitian metric is non-zero or zero as described
in equation (34). The representation theory has a time-like case for which the Little
group is compact, SO(3) and U(3), respectively. Furthermore, the null Little groups are
E(2) = SO(2) and CE(2) = U(2) ⊗s C

2, respectively, that have compact subgroups SO(2)
and U(2) = U(1)⊗ SU(2).

The � �= 0 case of the representations of the canonical group is the general quantum case
with which we are primarily concerned here. The Little group in this case is the non-compact
U(1, 3) and there is not an invariant Hermitian metric to define the time-like and null cases as
above. Instead, there is an additional ‘ 2�I

bc

(
Y
bc

− 2
)
’ term in the metric representing quantum

fluctuations that enables states for which the Hermitian metric is zero and non-zero to be
transformed into each other.

Also, in general, the representations of the U(1, 3) can be reduced with respect to the
group U(3) to form an infinite ladder of finite-dimensional representations (45). These finite-
dimensional representations that these ladder rungs form are equivalent to the rest frames in
this more general theory. Provided βi, γ i = 0, these rungs are transformed into each other
and do not mix. However, as the general canonical group considers non-inertial frames for
which βi, γ i �= 0, these states can now mix. Thus, the representations would be expected to
generate the full particle spectra as a dynamical group. The concept of U(1, 3) as a dynamical
group generating the particle spectra has been explored by Kalman [21, 22].

It has been noted previously that the canonical group has four invariant Poincaré
subgroups. These subgroups leave the Hermitian metric invariant. Consider the usual
physical Poincaré subgroup. Transformations with respect to this subgroup correspond to
inertial frames. In this case, the rungs of the ladder do not mix and the rungs viewed as
particle states are left invariant in the sense that they only mix within the rung.

Thus, there are no true invariant time-like and null states in this representation theory
and merely invariant time-like and null states under certain restricted transformations. These
states, under the appropriate conditions, can be transformed amongst each other. The reason
for this is contained in the extra term involving the Y generator in the expression for the metric,
the second Casimir invariant given in (54). In the degenerate classical case with � → 0, the
term involving Y vanishes and the first term is simply the Hermitian metric on Abelian C

4.
Then, in this case, the values of the Hermitian metric label the time-like and null states as
invariant representations. In the general quantum case, only the sum of the Hermitian metric
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and the Y term is invariant. Thus, by suitable values of the Y term, it can be seen that a state in a
null frame (with zero Hermitian metric) and one in a time-like frame (with non-zero Hermitian
metric) can have the same Casimir invariant and hence be transformed into each other. It is
only through the quantum fluctuations that the Y term represents that this is possible.

So far the discussion has focused on time-like frames. It is equally possible to reduce the
representations with respect to the null group, described below, that is C(2). Similar arguments
then apply with the null frames defining the rungs of the ladder instead of the time-like rest
frames.

3.3. Representations of rest and null frames

We can examine the representations that are the equivalent of rest and null frames in this
theory. However, they will no longer, in general, be irreducible representations corresponding
to pure particle states once transformed to a general frame.

Consider again the semidirect product G = U ⊗s N . The action of U on N is
n′ = U−1nU . Define the subgroups U ◦ ∈ U◦ ⊂ U and n◦ ∈ N ◦ ⊂ N with the property
n◦ = U ◦−1n◦U ◦. That is, G◦ = U◦ ⊗ N ◦ is a maximal direct product that is a subgroup of G.
Then G◦ is the group G restricted to the generalized rest or null frame.

Before looking at the canonical group, we briefly discuss the Poincaré group to show that,
in this familiar case, this definition defines the usual time-like and null rest frames.

In this physical discussion, the groups U(3) and C(2) are introduced as corresponding
to the generalized concept of rest and null frames in the discussion. The following sections
show more clearly why these groups are considered in this manner and how this relates to the
Poincaré case with which we are familiar.

3.3.1. Poincaré case. In the Poincaré case, the representations induced by the representations
of G◦ have the special property that they are isomorphic to the representations that are induced
by the stabilizer group Gη. This remarkable property means that the single-particle states
remain single-particle states when viewed from a frame that has a relative velocity as one
would expect in this special case. To see this, consider the time-like rest frame containing the
point x◦ = (x◦, 0, 0, 0) ∈ T (1) � R. Then G◦ = SO(3) ⊗ T (1). The representations are
simply ρs,µ(R, x◦) = σs(R) eiµx◦

where R ∈ SO(3) and s is the Casimir invariant of SO(3)
and µ is the Casimir invariant of T (1) [15].

Note that any Lorentz transformation can be written as L = QR and any point x such
that x · x < 0 as x = Qx◦ with Q ∈ SO(1, 3)\SO(3). Therefore the cosets γQ ∈ G/G◦

continue to be labelled by Q only. G◦ may then be used to induce representations on G and
the discussion continues as before. Similar arguments hold for the null case x · x = 0 with
Q ∈ SO(1, 3)\E(2).

3.3.2. Canonical group rest and null frame. Consider then the condition n◦ = U ◦−1n◦U ◦

for the canonical group C(1, 3) = SU(1, 3) ⊗s OS(1, 3). Explicitly, this is

g(U−1, 0, 0, 0)g(I, ϑ, ω, ι)g(U, 0, 0, 0) = g(I, ϑ,Uω, ι). (55)

Thus the pair U ◦, n◦ = (ω◦, ι) are given by the condition U ◦ω◦ = ω◦. This condition is
satisfied by the usual four cases: (ω◦, ω◦) < 0, G◦ = SU(3)⊗ OS(1); (ω◦, ω◦) = 0, ω◦ �= 0,
G◦ = C(2)⊗ E(2); (ω◦, ω◦) > 0, G◦ = SU(1, 2)⊗ OS(1); and the degenerate case ω◦ = 0.
We consider further only the first two cases.
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3.3.3. Canonical group rest frame: (ω, ω) < 0 case. In this case, G◦ = SU(3) ⊗ OS(1).
The representative point in the orbit may be taken to be the rest frame for which only the
time–energy zeroth component has non-zero values. That is, these are the points in the
oscillator group for which {ωa} = {ω◦, 0, 0, 0} that defines the one-dimensional oscillator
subgroup OS(1) of OS(1, 3). The four generators {A+

0, A
−

0, Z, I } define the algebra of the
one-dimensional oscillator group OS(1).

The representations σa,b of SU(3) are given by the finite-dimensional D matrices [18].
The Casimir invariants restricted to C◦(1, 3) = SU(3)⊗ OS(1) are

c1(G◦) = I = κ0

c2(G◦) = A+
0A

−
0 − IY = c2(OS(1)) = κ0κ1

c4(G◦) = (A+
0A

−
0)

2 − I 2Y 2 − I 2Ẑi,j Ẑj,i = c2(OS(1))2 + κ0
2c2(SU(3))

c6(G◦) = (A+
0A

−
0)

3 − I 3Y 3 − I 3Ẑi,j Ẑj,kẐk,i = c2(OS(1))3 + κ0
3c3(SU(3))

(56)

where in this expression, i, j, k = 1, 2, 3, and the Casimir invariants for SU(3) are given
in (41).

3.3.4. Canonical group null frame: (ω, ω) = 0 case. In this case, G◦ = C(2) ⊗ E(2). In
the null case, the representative point of the orbit may be taken to be ω̃◦ = {ω̃◦, 0, 0, ω̃◦}. The
three generators {A◦±, A◦±, Y } with A◦± = 1

2 (A
±
3 − A±

1 ) satisfy the algebra

[A◦±, Y ] = ±A◦± [A◦+, A◦−] = 0 (57)

which is the algebra of the CE(2) complex Euclidean group in two dimensions. The Casimir
invariant is

c2(CE(2)) = A◦+A◦−. (58)

The algebra of the group U◦ must commute with the generators {A◦±, A◦±, Y }. The maximal
sets of such generators are {C±

i , Zi,j , I
◦} where i = 1, 2 in this section and

C+
i = Zi,0 − Zi,3 C−

i = Z0,i − Z3,i I ◦ = Y − Z3,3 (59)

where in this section i, j, . . . = 1, 2. These generators satisfy the algebra

[Zi,j , Zkl] = δjkZli − δilZjk [C+
i , C

−
j ] = δij I

◦ [Zij , C
±
k ] = ±δikC±

i . (60)

This is the algebra of the canonical group in two dimensions, U◦ = C(2). (This is analogous to
the two-dimensional Euclidean group appearing in the null representation case of the Poincaré
group.) C(2) can be factored into C(2) = SU(2) ⊗s OS(2). The corresponding parameters of
the group space are U ∈ SU(2) and g(ϑ, ωi , ι) ∈ OS(2).

3.4. The Segal–Bargmann transformation and the canonical realizations

The representations of the canonical group have been naturally formulated on the Bargmann
space of analytic functions. In this space, none of the generators {T ,E,Qi, Pi} of the
Heisenberg algebra are diagonal. The Segal–Bargmann transform may be used to transform
to the Hilbert space in which a subset of these generators is diagonal. For example, we could
choose to diagonalize {Qi, T }. Then from equation (8), the transform is

ψ(q, t) = (Bf )(q, t) =
∫
B(z, q, t)f (q, t) dµ(z) (61)

with B(z, q, t) = π−1 exp
(
− 1

2 ((z, z)− t2 + q2) +
√

2(−z0t + ziqi)
)

.
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But note that we could equally well transform to spaces that diagonalize {Pi, T } to give
functions of the formψ(q, t) by using the transform kernelB(z, p, t). The same also applies to
the generator subsets {Pi,E}: ψ(p, e) usingB(z, p, e) and {Qi,E}: ψ(q, e) usingB(z, q, e).

It should be clear that in this intrinsically quantum theory, the representation using the
Bargmann space plays a role analogous to the Hamiltonian in classical mechanics; all of
the basic physical degrees of freedom {T ,E,Qi, Pi} appear on an equal, non-preferential,
footing. The Segal–Bargmann transform plays the role of the Legendre transform taking these
to the formulations in which some of the generators are observable and therefore diagonal.
The different diagonalizations embody Born’s notion of reciprocity and give precise meaning
to the heuristic expression {t, e, qi, pi} → {t, e, pi,−qi}. It should be observed that even
in the classical theory, where the Legendre transformation takes the Hamiltonian formulation
given in terms of {p, q} to a Lagrangian formulation in terms of {q, q̇}, there is a conjugate
Legendre transform that takes the Hamiltonian formulation to a Lagrangian formulation in
terms of the {p, ṗ}. While the conjugate transform is singular for the idealized concept of a
free particle, it is in all other cases valid.

4. Discussion and conclusions

4.1. Discussion of the general representations

Let us now summarize the picture that is emerging. From Born’s very simple
reciprocity principle that physical theories are invariant under the transform {t, e, qi, pi} →
{t, e, pi,−qi} we are led to introduce a reciprocally conjugate relativity that bounds the rate of
change of momentum by a fundamental constant b. This also leads us to consider the quantum
noncommutative space Q = C(1, 3)/SU(1, 3) (or the universal covers) as the underlying
physical space that takes on the role of the Minkowski space M = P/L. Now, with the
decomposition C(1, 3) = SU(1, 3) ⊗s OS(1, 3), it is clear that the space Q has a generalized
metric c2(OS(1, 3)) = − 1

2λt
−2

(
T 2 + E2

c2b2 − Q2

c2 − P 2

b2 + 2�I
bc

(
Y
bc

−2
))

(54). (Note that there is no
natural metric for C(1, 3)/U(1, 3).) Points in the space Q are quantum oscillations. All of the
physical degrees of freedom {T ,E,Q,P } are equally physical and may be transformed into
one another through the action of the homogeneous group as described in (51) and (52). It is
clear that these effects will only be seen when the rate of change of momentum approaches b
which may be very large. These equations reduce to the expected form in the limit (53).

The idea is that the irreducible unitary representations of C(1, 3) define the particle states
of the theory on Q as a direct generalization of the representations of P giving the free particle
states on M. A key difference is that the latter considers only free particle states from uniform
velocity frames with no rates of change of momentum. The more general frames in C(1, 3)
include rates of change of momentum which is indirectly related to acceleration. Thus, if
we take a single-particle state, we would expect it to transform into a compound state that
decomposes into a sum of single-particle states representing the particle interactions of the
non-uniform frames.

The Little group of the representations of C(1, 3) is the non-compact group U(1, 3). It
appears twice, once in the irreducible unitary representation factor and once in the projective
representation factor (31). The unitary representations of this non-compact group are generally
continuously infinite dimensional. However, there are three discrete series Dp

±,D
p

0 that are
comprised of infinite ladders of discrete representations (44). At least one of these series,
D3

0, is a ladder of finite-dimensional irreducible representations of U(3). In the rest or null
frame, one is simply picking up one of the rungs in the U(1, 3) ladder of finite-dimensional
representations.
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The question remains as to the physical implications of the other series of representations
that are infinite dimensional. In the Poincaré case, we simply discard the infinite-dimensional
representations as unphysical, including the E(2) case that shows up in the null representation as
described above. It may be that particles are the ladders of finite-dimensional representations
and the other representations have some more field-like interpretation. As in the Poincaré
case, the covering groups may be required to obtain the full particle spectrum. Clearly, the
representation theory of the canonical group has a very rich texture that will take considerable
effort to explore fully. While very rich in content, it is also fully defined by the group properties.
Furthermore, with the introduction of the conjugate relativity principle, some of the existing
assumptions about the physical interpretation of empirical data require modification.

4.2. Conclusions

Born studied this idea of reciprocity over a period of more than a dozen years. This remarkably
simple idea is present in the most elementary treatments of Hamiltonian mechanics and
pervades Dirac’s transformation theory of quantum mechanics. By pursuing it directly, one
is inevitably brought to the concept of reciprocally conjugate relativity presented in this and
previous papers [6, 7]. With this, one obtains the beautiful structure of the canonical group and
its representation theory. The manner in which it, along with the Segal–Bargmann transform
that allows various diagonalizations, completely embodies the idea of reciprocity is quite
remarkable. The quantum conditions are intrinsic to the symmetry of the theory. The group
has a very rich representation theory that may be adequate to encompass a significantly larger
body of physics than the Poincaré representations. The manner in which the Little group,
while a non-compact group, yields infinite ladders of finite-dimensional irreducible unitary
representations, which have the potential to encompass the ever increasing array of particles
is intriguing. The rest and null frames yield the groups SU(3),SU(2) and U(1) that appear in
the standard theories.

The author is not capable of fully exploring the full spectrum of phenomena that results
from this remarkably simple idea and of determining whether it correlates with the observed
phenomena in this initial paper. It is hoped that this exposition conveys the possibilities with
sufficient clarity to cause further investigation of this idea.
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